

Burn-in & Test Socket Workshop

March 3-6 , 2002 Hilton Phoenix East/Mesa Hotel Mesa, Arizona

Computer Society

BITS

COPYRIGHT NOTICE

• The papers in this publication comprise the proceedings of the 2002 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.

 There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

Technical Program

Session 2 Monday 3/04/02 10:30AM

Managing High Frequency Requirements

"Optimizing Load Board Design And Modeling For High Frequency Contactors"

Jeff Sherry - Johnstech International Corporation

"The New YieldPro Array Series Contactor"

Julius Botka - Agilent Technologies

"Electrical And Mechanical Performance Characterization Of High Frequency Test Sockets" Lisa Steckley - IBM Microelectronics Dr. Hanyi Ding - IBM Microelectronics Optimizing Load Board Design and Modeling for High Frequency Contactors

Jeff Sherry, RF Engineer Johnstech International

Johnstech"

Discussion Topics

- Modeling & its importance
- Designing load boards for optimal performance
- Load board effects
- Grounding schemes
- Crosstalk improvements
- Load board pad size and placement
- Model validation & performance examples

Johns<u>tech</u>"

Modeling & Its Importance

- Determine potential problems before building hardware
- Determine expected performance
- Determine trends and sensitivity of circuits
- Determine effects of tolerances
- Determine interaction between components in system (device, contactor, handler, etc.)
- Design for the device, form, fit, and function of the end application

Johns<u>tech</u>

Designing Load Boards for Optimal Performance

Microstrip and Coplanar Effects

- Substrate thickness \downarrow	Impedance \downarrow
Trace width \downarrow	Impedance ↑
• Permittivity (ε_r) \downarrow	Impedance ↑
Trace thickness \downarrow	Impedance ↑
oplanar Waveguide Effects	
- Spacing (pitch) \downarrow	Impedance \downarrow
 Adding ground plane 	Impedance \downarrow

Johns<u>tech</u>"

Load Board Effects

- Loss tangent affects insertion loss more at higher frequencies
- Uniformity of ε_r and loss tangent vs. frequency
- Substrate thickness affects inductance to ground
- Increased frequency means thinner substrates
- Substrate thickness and dielectric constant (E_r), along with line width, are major parameters in controlling impedance
- Plating thickness has the biggest effect on load board life

Johns<u>tech</u>

Load Board Effects

- Things to improve load board design
 - Eliminate right angles
 - Eliminate changes in line width
 - Separate high frequency traces with ground
 - Move clock traces away from other signal lines
 - Place decoupling components close to the device
 - Use matched impedance traces up to the device or test contactor

6

Johnstech

Grounding Schemes

- Length and area of the ground path is very important
- Ground inductance should be minimized
- Resistance of ground should be low (to minimize power supply voltage drop)
- Grounding controls crosstalk between signals

Johns<u>tech</u>"

Crosstalk Improvements

- Increase the spacing (S) between traces
- Minimize substrate height (H) while achieving matched impedance
- Route signals orthogonally between layers
- Minimize parallel run lengths between signals
- Use differential routing for clock or critical nets

Load Board Pad Size and Placement

9

Load Board Pad Size and Placement

- Validating the Model
 - Explain test results
 - Confirm if contactor will meet customer needs
 - Identify improvements to contactor
 - Identify improvements to load board (i.e. pad sizes)
 - Determine equivalent circuits
 - Investigate changes to contactors to meet customer specific needs

Johnstech"

Model Validation & Performance Examples Leaded Series Return Loss (S₁₁) Data

Johnstech"

Leaded Series Insertion Loss (S₂₁) Data

Johns<u>tech</u>

10GBit/s BGA Non-Optimized Load Board Layout

Quake

10GBit/s BGA Optimized Load Board Layout

15

Model Validation & Performance Examples 10GBit/s BGA With Non-Optimized Load Board Layout

10GBit/s BGA With Optimized Load Board Layout

Return Loss (S₁₁) of Enhanced Pad Series Contact with Previous Standard Pad and Optimal Load Board Pad

18

Johnstech

Insertion Loss (S₂₁) of Enhanced Pad Series Contact With Previous Standard Pad and Optimum Load Board Pad

Johnstech"

Conclusion

- Modeling trends can determine how to improve load board layout
- Load board layout can greatly affect test data
- Good microwave design principles apply to load board design
- Modeling and test data have shown that significant improvement can be attained by better matching load board and contactor impedance to the Device Under Test (DUT)
- Ball Series contributions from Quake Technologies indicated with the Quake logo

Johns<u>tech</u>

The New YieldPro Array Series Contactor

Patent USP# 6,299,459

Julius Botka, Master Scientist julius_botka@agilent.com

Brief History

- Semiconductor manufacturers and test houses are required to test devices with multiple functions
- Packages vary in type, size and pitch
- Contactors provide the final crucial link to testers
- First YieldPro contactor patented in 1997
 - Lowest parasitics with independently compliant wiping contacts
 - Path length is 0.037", performance up to 1<u>8GHz</u>

Les.

Simple

SOIC-8

Housina

Frame with

slider inserted

Julius Botka BITS.ppt 10/31/01

Page 2

Frame and Slider

mounted on elastomer

Original YieldPro Contactor for Leaded Components

Today's evolution of the business:

- Size and pitch keep getting smaller, number of contacts increasing
- Move from leaded to leadless BGA/LCC packages (Ball Grid Array and Leadless Chip Carrier)

The New YieldPro Array Contactor

- A new solution is needed for contacting new chip scale packages, such as BGA and LCC
- Agilent's new YieldPro Array design addresses technologies, Bluetooth®, Wireless LAN and high speed digital components
- All are heading toward higher frequencies and require good performance in high speed digital, and at the 3rd harmonic of the RF fundamental

Patent USP# 6,299,459

Julius Botka BITS.ppt 10/31/01

Design Considerations

Problem: Lack of reliable/repeatable contact between tester and component to be tested

Solution:

- Two parallel contact paths from solder ball/contact pad to DUT board
- Contacts do not wear the DUT board

Problem:

Unwanted and unmanageable inductive or capacitance parasitics

Solution:

- Parasitic inductance and capacitance are reduced by controlling impedance to be closer to 50Ω
- Parasitics are further reduced by minimizing height of the contactor
- If increased impedance is required, adjacent ground contacts can be removed

Julius Botka BITS.ppt 10/31/01

Problem: Excessive and undefined contact resistance sensitive to contaminants

Solution:

- Resistance is lowered by having two parallel contact paths
- The slider can follow the ball, always maintaining two contacts to pad or the sides of the ball

Problem: No wiping contact to ball/pad

Solution:

Flexible heads provide wiping action

- Slider wipes the sides of the ball, while barbs pierce through the oxide layer without gouging either the ball or the pad
- CSP Head contacts flex and wipe contact pad toward each other

Slider wipes the sides of the ball, barbs pierce the oxide layer

Problem: Damage to the bottom of the solder ball/pad due to direct hit and excessive pressure from contact

Solution:

 No sharp points associated with the top of the contact.
 Therefore, no gouging or re-shaping can occur. The ball/pad is not damaged by the YieldPro Array contactor.

Problem: Given there is always contamination in a test operation, it becomes very difficult to clean the contactor due to narrow open spaces on the top surface where contamination can lodge

Solution:

- Housing designed for easy removal of contaminates using low pressure compressed air
- Complete contactor can be thoroughly cleaned ultrasonically

Large gaps in between contacts

Problem: After 100,000 plunges, excessive wear requires costly and frustrating contactor component maintenance or replacement

Problem: Life of some contactors is limited to a few tens of thousands plunges, offsetting the initial lower price

Solution:

- Typical life of a new YieldPro Array contactor is well over a million cycles
- Contacts can be easily replaced on site

Problem: Plating will wear away, oxidation may occur

Solution:

- Metal contact components of the YieldPro Array contactors are made of solid precious and semi-precious metals
- No increase in contact resistance with wear

Problem: Part handler alignment is difficult. Solution:

- Generous individual independent contact compliance, up to 0.011"
- With the contactor attached to the DUT board, there is no force between the bottom of the housing and the DUT board. This eliminates housing distortion over time

 Sliders shown in fully compressed position

Julius Botka BITS.ppt 10/31/01

Problem: Usability issues revolving around scaled down versions of large designs, first developed for lower frequency applications

Solution:

- The YieldPro Array design concept is not subject to problems associated with scaled down designs
- Performs at high RF and microwave frequencies in demanding applications

Initial Agilent design consideration

Scaled down spring uncoils with use, and can split the housing sleeve retaining contaminants and losing compliance

Fixture for Contactor Evaluation

Coplanar waveguide substrate with gated short at contactor plane. Measurement yields 2 x loss and dispersion. (Shift phase 180° before saving)

Fixture S-parameters measured

Agilent Technologies

Fixture time domain is computed from S-Parameters Housing and contacts gated

S-Parameter of fixture with gates "on"

Agilent Technologies

S₁₁ Gated, coplanar substrate electrical length is removed with port extension, no loss or dispersion correction

Port Extension = 348 ps, 104.33 mm, 125.196 degrees

BITS.ppt 10/31/01

 S_{11} gated of contacts and housing with 2x loss and dispersion removed by vectorially dividing measured and gated S_{11} by stored data from Page 18, thereby correcting for loss and dispersion m_1

freq (1.000GHz to 12.00GHz)

m1 freq=1.000GHz Data_minus_loss=0.044 / -98.862impedance = Z0 * (0.983 - j0.085)

m2 freq=3.090GHz Data_minus_loss=0.121 / -104.742 impedance = Z0 * (0.916 - j0.217)

m3 freg=11.78GHz

 $Data_minus_loss=0.087 / -124.213$ impedance = Z0 * (0.898 - j0.130)

> Use this data to generate model

Model of Contacts with Effects of Housing Overlay

Measured S_{11} of gated housing and contacts and computed S_{11} (S_{55}) from model is shown.

S₁₁ of contact region from model

Julius Botka

BITS.ppt 10/31/01

CSP 0.5 mm Contactor

Best DUT Board Practices at High Frequencies

- Coplanar waveguide to contactor is best transmission type, use on top surface of the board above 6 GHz
- In microstrip, minimize lengths of vias to pads under contactor
- Use blind vias, not to have the signal via extend down to or through the ground plane
- Control impedance between pads under contactor
- Compensate signal path extending below contactor housing, to achieve desired impedance/compensation for best contactor match

Accounting for housing effects

- This transmission line represents a reduced impedance segment of the Zo transmission line due to the overlay of the housing from the edge to the contacts
- A reduction from 50 Ohms to ~ 40 Ohms was seen due to the overlay of the housing on a coplanar waveguide transmission line on the top layer of the DUT board; Less reduction is expected for microstrip lines
- The effect of the housing overlay can be mitigated by accounting for the higher effective overall permitivity under the housing material
- Adjusting the dimensions of the transmission line accordingly can maintain Zo to the contacts
- This same region's impedance Z2 can be adjusted to values other than Zo to transform/improve the contact's specified impedance over the desired frequency range

Julius Botka BITS.ppt 10/31/01

Values in this table pertain to center contact with ground contacts on two sides																	
	Contact Pressure	Contact Width	Recommended Ball Sizes	Recommended Size Pad Min.	Contact Compliance	DC Resistance	Leakage	Re	eturn Los	s	Impedance Zo	Electrical Length	Max. Current Carrying Capacity	Capacitance	Inductance	Physical Length	Effective Dielectric Constant, E eef
Contactor Type & Pitch								3 GHz	10 GHz	18GHz	Along the Length of Contacts	@ 10 GHz in Degrees					Center Contact to Ground
For leaded packages/LCC [▶]					Note 1	Note 2	Note 3				Note 4	Note 5		Note 6			
YieldPro 1.25 mm	40 gr	0.020"			0.007"	<40m Ohm	<i na<="" td=""><td>>21 dB</td><td>>12 dB</td><td>>8 dB</td><td>26.3 Ohm</td><td>18</td><td>3 A</td><td>0.190 pF</td><td>0.131 nH</td><td>0.927 mm / 0.0365"</td><td>2.65</td></i>	>21 dB	>12 dB	>8 dB	26.3 Ohm	18	3 A	0.190 pF	0.131 nH	0.927 mm / 0.0365"	2.65
Note 7	70 gr max																
	05	0.045			0.007	40mm Ohum	1			5 0 JD	CO Ohm	40	0.4	0.007 - 5	0.44 ml l	0.007 mm (0.0005"	0.05
VielaPro U.8 mm	25 gr, 40 gr max	0.015			0.007	<40m Ohm	<i na<="" td=""><td>>18.5 dB</td><td>>9.5 ab</td><td>>5.9 aB</td><td>22 Onm</td><td>18</td><td>2 A</td><td>0.227 pr</td><td>0.11 nH</td><td>0.927 mm / 0.0365</td><td>2.65</td></i>	>18.5 dB	>9.5 ab	>5.9 aB	22 Onm	18	2 A	0.227 pr	0.11 nH	0.927 mm / 0.0365	2.65
	40 yr max																
YieldPro 0.5mm	20 gr.	0.010"			0.007"	<40m Ohm	<i na<="" td=""><td>>16.25 dB</td><td>>7.25 dB</td><td>>4.5 dB</td><td>17.6 Ohm</td><td>18</td><td>1 A</td><td>0.284 pF</td><td>0.088 nH</td><td>0.927 mm / 0.0365"</td><td>2.65</td></i>	>16.25 dB	>7.25 dB	>4.5 dB	17.6 Ohm	18	1 A	0.284 pF	0.088 nH	0.927 mm / 0.0365"	2.65
Note7	28 gr max	-										-		••••			
	-	_															
YieldPro 0.4mm	15 gr,	0.007"			0.007"	<40m Ohm	<i na<="" td=""><td>>18.45 dB</td><td>>9.45 dB</td><td>>6.15 dB</td><td>21 Ohm</td><td>18</td><td>0.75 A</td><td>0.238 pF</td><td>0.105 nH</td><td>0.927 mm / 0.0365"</td><td>2.65</td></i>	>18.45 dB	>9.45 dB	>6.15 dB	21 Ohm	18	0.75 A	0.238 pF	0.105 nH	0.927 mm / 0.0365"	2.65
	20 gr max																
For CSP	: BGA	VLC	SA Pa	ackad	es												
YieldPro Ultra	30 gr,		0.6-0.762	0.5 x 0.5	0.011"	<40m Ohm	<i na<="" td=""><td>>27.5 dB</td><td>>17.8 dB</td><td>>14 dB</td><td>38.5 Ohm</td><td>22</td><td>2 A</td><td>0.159 pF</td><td>0.235 nH</td><td>1.438 mm / 0.0566"</td><td>1.65</td></i>	>27.5 dB	>17.8 dB	>14 dB	38.5 Ohm	22	2 A	0.159 pF	0.235 nH	1.438 mm / 0.0566"	1.65
BGA/LGA 1.0mm	50 gr max		mm	mm										·			
YieldPro Ultra	25 gr,		0.48-0.54	0.35x0.35	0.011"	<40m Ohm	<l na<="" td=""><td>>20.75 dB</td><td>>11.5 dB</td><td>>8 dB</td><td>28.6 Ohm</td><td>22</td><td>2 A</td><td>0.213 pF</td><td>0.175 nH</td><td>1.438 mm / 0.0566"</td><td>1.65</td></l>	>20.75 dB	>11.5 dB	>8 dB	28.6 Ohm	22	2 A	0.213 pF	0.175 nH	1.438 mm / 0.0566"	1.65
BGA/LGA 0.8mm	40 gr max		mm	mm													
YieldPro Ultra	20 gr,		0.3-0.42	0.2 x 0.2	0.007"	<40m Ohm	<i na<="" td=""><td>> 24.5 dB</td><td>>15 dB</td><td>>11.2 dB</td><td>34.5 Ohm</td><td>22</td><td>1 A</td><td>0.177 pF</td><td>0.211 nH</td><td>1.438 mm / 0.0566"</td><td>1.65</td></i>	> 24.5 dB	>15 dB	>11.2 dB	34.5 Ohm	22	1 A	0.177 pF	0.211 nH	1.438 mm / 0.0566"	1.65
BGA/LGA 0.5mm	28 gr max		mm	mm													
Note 1: Resistance measured on a clean contactor								Note 5: Ca	nacitance	and Induc	tance are d	istribut	ad over t	he contac	t length		
Note 2: Leakage current measured with 10V applied to signal contact						ontact.		Note 6: Physical length is shown fully compressed									
Note 3: Assumes 50 Ohm environment.							Note 7: Agilent YieldPro contactors for leaded/LCC packages support: SOT, SOIC, SSOP,										
Note 4: Apply current only after making contact.						TSSOP, MSOP, QFN, TQFP, MLF, and MLP device package requirements.											
							· · · ·										

Economic Benefits:

 Increase the yield by not rejecting good parts. Smaller guard bands can be used because of less uncertainty in the measurement

- Contacts are made of precious metal and will not oxidize.
 Good performance is maintained due to lack of corrosion
- The longer life of the contactor reduces cost per parts tested

Electrical and Mechanical Performance Characterization of High Frequency Test Sockets

Authors: Dr. Hanyi Ding and Lisa Steckley, IBM Microelectronics Presented by: Lisa Steckley

Introduction

This presentation summarizes the ongoing work at IBM to understand the factors affecting both the electrical performance and mechanical durability of several commercial RF test sockets.

Objective

- Purchase from a single source to reduce COST
- Choose best socket for specific application; PERFORMANCE
- Deliver ROBUST manufacturing solution

Socket Requirements for Testing RF Modules

- High frequency to 12 GHz
- Low inductance
- Repeatability
- High manufacturing precision fine pitch
- High volume test ease of maintenance
- Heat dissipation

Socket Qualification Process

Qualification Process: Determine package

 Leadless Plastic Chip Carrier (LPCC) 20 lead-tin leads, 4x4mm, 0.5mm pitch, exposed paddle ground

Qualification Process: Contactor technologies studied

- Pogo-style
 - Spring loaded, gold plated, BeCu pogo, torlon housing
- S-geometry
 - Gold plated, BeCu contact, torlon and elastomer housing
- Low-profile interconnect
 - Conductive interconnect simulating plunge-to-board, torlon housing
- Conductive elastomer
 - Gold plated contact set plus conductive elastomer, torlon housing

Qualification Process: Test Sockets Mechanically

- Build packages with shorted die
- Build board for continuity test
- Inspect packages, contacts, and board
- Cycle packages through handler, testing for DC contact
- Re-inspect for contact and board wear

Mechanical Analysis: Pogo-style socket before test

March 3-6, 2002

BiTS Workshop

Mechanical Analysis: Pogo-style socket after test

(picture after 5000, 10000 parts cycled)

- Lead-tin from package collects on gold pogo
- Inexpensive maintenance

Further testing required to determine cleaning frequency

Mechanical Analysis: S-contact socket before test

March 3-6, 2002

BiTS Workshop

Mechanical Analysis: S-contact socket after test

(picture after 5000, 10000 parts cycled)

- Lead-tin debris on elastomer; potential for shorting
- Little to no damage on contacts
- Inexpensive maintenance

Further testing required to determine cleaning frequency

Mechanical Analysis: Low-profile interconnect socket before test

March 3-6, 2002

BiTS Workshop

Mechanical Analysis: Low-profile interconnect socket after test (picture after 5000, 10000 parts cycled) Lead-tin debris visible Contact scrubbing points show little wear Expensive maintenance; further testing to determine mechanical life Further testing required to determine cleaning frequency

Mechanical Analysis: Conductive elastomer socket before test

March 3-6, 2002

BiTS Workshop

Mechanical Analysis: Conductive elastomer socket after test

(picture after 5000, 10000 parts cycled)

- Lead-tin collects on gold contact set
- Expensive maintenance; further testing to determine mechanical life

Further testing required to determine cleaning frequency Mechanical Analysis: Board wear after test

- Pogo-style socket
 - Little wear on board; consistent witness marks
- S-contact socket
 - Evident wear from wiping action
- Low-profile interconnect socket

Visible wear on board; can be improved by using elastomer added for compliance

- Conductive elastomer socket
 - Little wear on board

Qualification Process: Test socket continuity

Yield using pogo socket:

5000 Tested	PASS FAIL	97% 3%
10000 Tested	PASS FAIL	92% 8%

BiTS Workshop

Qualification Process: Test socket continuity

Yield using s-contact socket:

5000 Tested	PASS FAIL	97% 3%
10000 Tested	PASS FAIL	92% 8%

BiTS Workshop
Qualification Process: Test socket continuity

Yield using low-profile interconnect socket:

5000 Tested	PASS FAIL	97% 3%
10000 Tested	PASS FAIL	92% 8%

Qualification Process: Test socket continuity

Yield using conductive elastomer socket:

5000 Tested	PASS FAIL	97% 3%
10000 Tested	PASS FAIL	92% 8%

- Socket companies typically provide characterization reports based on a very simple equivalent circuit.
- Our goal is to verify the performance parameters they claim using:
 - > Momentum, a 2.5D electromagnetic simulator
 - Ansoft HFSS, a 3D modeler and simulator

Equivalent circuit for socket pins

March 3-6, 2002

Structure setup for pogo pin type socket modeling using Momentum

March 3-6, 2002

Structure setup for pogo pin type socket modeling using HFSS

March 3-6, 2002

Recognition of Support

- John Blondin IBM, Front-End-Hardware
- Ronald Clarke IBM, Test Applications Eng.
- Dr. Hanyi Ding IBM, RF Board Design
- John Ferrario IBM, Manager RF Test Development
- Gene Patrick IBM, Front-End Hardware
- Kevin Potasiewicz IBM, RF Test Engineer
- Randy Wolf IBM, RF Board Design