

# Burn-in & Test Socket Workshop

March 4 - 7, 2001 Hilton Mesa Pavilion Hotel Mesa, Arizona

Computer Society

Sponsored By The IEEE Computer Society Test Technology Technical Council



# BITS

### **COPYRIGHT NOTICE**

• The papers in this publication comprise the proceedings of the 2001 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.

 There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

# **Technical Program**

Session 7 Wednesday 3/07/01 8:00AM

Advancements In Socket Products

"PASS Chip" Min Cho – Inabata America Corporation

### "Evaluating Elastomer For High Density BGA Socket"

Ila Pal - Ironwood Electronics, Inc.

"Low Cost Thermal Management Using Compliant Thermal Interface Materials" Nancy Dean – Honeywell Electronic Materials (Presenter) Kenichiro Fukuyama - Honeywell Electronic Materials

# **2001 Burn-in and Test Socket Workshop**



March 4 - 7, 2001

Presented By : Min Cho

### Manufactured by

**Distributed by** 



**Inabata America** Corporation

Page 1

# **Mission**

•Based on years of experience and survey, we have successfully invented the most effective, simple, and least costly tools for electrical contact cleaning: PASS CHIP products.

•To be a unique provider of the best solution for the contact problems which inevitably arise with all kinds of electronic devices to be seen everywhere today. •To contribute toward more productivity yielded by more effective and less costly production in the electronics industries worldwide, resulting in higher quality goods and higher costperformance that can more comfortably surround and further enrich the daily lives of people.





# Market Outlook -1

The following facts will dramatically expand the market of contact cleaners.

Semiconductors are in huge demand

The IT revolution is creating a large variety of applications of powerful semiconductor products.

PCs, Mobile Phones, Video Cameras, DVD players, Communication Devices, Home Appliances, etc... •Estimation of monthly worldwide production of semiconductors

| Year           | <u>2000</u> | <u>2003</u> | <u>2005</u> |
|----------------|-------------|-------------|-------------|
| Number of Unit | 30,000      | 60,000      | 100,000     |
| (in Millions)  |             |             |             |

### This creates a need for <u>more</u> <u>frequent contact cleaning!</u>





# Market Outlook -2

Lighter, more compact packages of semiconductors will inevitably follow.

It is a fact: Electronic commodity goods are produced lighter, more compact, more ergonomic with each new generation. Newer types of semiconductors, such as FBGA & CSP will become more prevalent.

This creates the need for more advanced contact cleaning <u>methods</u>.





Page 4

# **Market Outlook -3**

### More productivity and more effectiveness in every process of production are needed

As the usage of mass-production increases, our testing process <u>must</u> become more effective.

An efficient contact cleaning operation should be easily done without a burden of cost.



This creates the need for an easier & cheaper method for contact cleaning





Before



The semiconductor industry has been looking for a better solution of contact cleaning for years. The following methods of contact cleaning are currently widely used:

### Ultrasonic-Wave cleaning

The outside cleaning company usually needs 4-5 days for cleaning time, and this requires substitutes of burn-in or final testing board



Costly, time consuming, troublesome in-out handling Professional services are needed



Costly





### Before



### Brush cleaning

Manual brushing takes a lot of time



Time consuming, less productive

### Air blow cleaning

Solder residues cannot always be completely removed



**Less effective** 









### •Replacement of contact pins instead of cleaning

Re-manufacturing the contact pins is costly



Replacing the pins requires a professional service



Costly, time consuming







" PASS CHIP " has created a perfect solution for contact cleaning to eliminate all sort of headaches that keep annoying production managers.

### Proven effectiveness in cleaning

Major manufacturers in the semiconductor industry have thoroughly evaluated "PASS CHIP" models and been well satisfied with its effectiveness in cleaning.







### **Evaluation Test of Cleaning operation**

- Package Used
- •Burn-in Boards
- •Evaluation method

- : TSOP2
- : 48 sockets x 66 boards
- : Compared occurrence of defective devices before and after PASS Chip application







### **Evaluation Test Results (66 Boards)**

|       | Ве   | fore Cleaning | g     | A    | fter Cleaning |       |
|-------|------|---------------|-------|------|---------------|-------|
| Board | Good | Defective     | Ratio | Good | Defective     | Ratio |
| 1     | 42   | 6             | 12.5% | 48   | <u>0</u>      | 0.0%  |
| 2     | 42   | 6             | 12.5% | 48   | 0             | 0.0%  |
| 3     | 45   | 3             | 6.3%  | 48   | 0             | 0.0%  |
| 4     | 46   | 2             | 4.2%  | 47   | 1             | 2.1%  |
| 5     | 43   | 5             | 10.4% | 47   | 1             | 2.1%  |
| 6     | 44   | 4             | 8.3%  | 48   | <u>0</u>      | 0.0%  |
| 7     | 40   | 8             | 16.7% | 47   | 1             | 2.1%  |
| 64    | 37   | 11            | 22.9% | 45   | 3             | 6.3%  |
| 65    | 39   | 9             | 18.8% | 46   | 2             | 4.2%  |
| 66    | 43   | 5             | 10.4% | 48   | <u>0</u>      | 0.0%  |
| Total | 2667 | 503           | 15.9% | 3109 | 59            | 1.8%  |







### •Ease of usage

"PASS CHIP" can be easily placed on the contact pins manually or by a vacuum pad, and requires NO professional services for effective cleaning.

### •Low cost

Cleaning your contactors with a disposable "PASS CHIP" requires no additional costs.







### •Short cleaning time

One or two wipes with "PASS CHIP" can instantly remove the solder residues or dirt from the contact pins, which results in shorter down time and a more productive testing process.







### Products for IC Socket contact cleaning

- 1. Flat sheet model for TSOP / QFP type of socket (Single coated or Double coated)
- 2. Cubic sheet model for TSOP / QFP type of socket
- 3. Pad model for CSP / BGA type of socket

•Useful both in a burn-in and a final test process as well as in a writing process of SRAM or Flash Me

•Available to any type of socket, i.e. OPENTOP, LID or LIDLESS.

•Available to any customer specifications.







# Product for Probe Card contact cleaning

Available to any customer specifications

•**Product for DIMM contact cleaning** Available to any customer specifications







# Ironwood Electronics, Inc.

# Evaluating Elastomer for High Density BGA Socket





# Agenda

- Socket design
- Tolerance analysis
- Elastomer properties
- Electrical characteristics
- Mechanical characteristics
- Transmission line theory
- Conclusions



# **Socket Design**





# **Alignment Plate Design**





# **Z-Axis Conductive Wire on Elastomer**

- Low-resistance (<0.01 $\Omega$ ) connector
- 30 Micron diameter gold plated brass wires
- Wire density 0.1mm or less
- 63° angled wire embedded in silicone
- Insulation resistance: 1000 M $\Omega$  @500V DC
- 50mA per filament
- Operating temperature: -35° to 100° C



# **SEM Picture of Elastomer**





# **Solder Ball on Elastomer**





# **Elastomer before Compression**





# **Elastomer after Compression**



# **Surface Effect on Solder Ball**





# **Resistance Test Setup**





# **Compression Vs Resistance**





# **Compression Load Test Setup**





# **Compression Vs Load**





# **Reliability Test Setup**





# **Endurance Characteristics**





# **Test Setup for Measuring Current**





# **Current Carrying Capacity**





# **Transmission Line Types**





### **Equivalent Circuit of Transmission Line**



| Parameter | Parallel-Plate<br>Line | Two-Wire Line                                                     | Coaxial Line                                               | Unit       |
|-----------|------------------------|-------------------------------------------------------------------|------------------------------------------------------------|------------|
| R         | $\frac{2}{w}Rs$        | $\frac{R_s}{a\pi}$                                                | $\frac{R_s}{2\pi}\left(\frac{1}{a}+\frac{1}{b}\right)$     | $\Omega/m$ |
| L         | $\frac{d}{w}\mu$       | $\left(\frac{\mu}{\pi}\right)\cosh^{-1}\left(\frac{D}{2a}\right)$ | $\left(\frac{\mu}{2\pi}\right)\ln\left(\frac{b}{a}\right)$ | H/m        |
| G         | $\frac{w}{d} \sigma$   | $\frac{\pi\sigma}{\cosh^{-1}\left(\frac{D}{2a}\right)}$           | $\frac{2\pi\sigma}{\ln\left(\frac{b}{a}\right)}$           | S/m        |
| С         | $\frac{w}{d} \in$      | $\frac{\pi \in}{\cosh^{-1}\left(\frac{D}{2a}\right)}$             | $\frac{2\pi\epsilon}{\ln\left(\frac{b}{a}\right)}$         | F/m        |

Source: Fundamentals of Engineering Electromagnetics - David K. Cheng



# Results

For 0.3mm thick elastomer:
Capacitance = 0.006 pF
Inductance = 0.06 nH
Resistance < 0.010 Ω</li>



### **Surface Mount Socket**





### **Solderless Socket**







# Conclusions

- Simple design of socket
- Easy manufacturability of components
- Better electrical and mechanical characteristics
- Low compression force per solder ball
- Damage free solder balls
- Fast, dense and durable
- High frequency IC prototyping applications
- Field upgradeable systems applications

## Low Cost Thermal Management using Compliant Thermal Interface Materials

### Nancy Dean Kenichiro Fukuyama Honeywell Electronic Materials

Honeywell

ELECTRONIC Interconnect MATERIALS Solutions

ITherm2000 5/24/00

### **SIA Roadmap - Projected Power Dissipation**



Power Dissipation at Burn-in and Test increases

- Thermal Management becomes more of an issue.

Honeywell



### **Thermal Resistance Calculations**

Total Thermal Resistance =(T<sub>junction</sub> - T<sub>ambient</sub>)/Power

High interface thermal resistance means Heat Sink thermal resistance must be lower (i.e., heat sink larger or more expensive)



### Heat Sink Thermal Resistance

- As a general rule, heat transfer from a heat sink scales with fin area.
- Heat spreading on heat sink base becomes important for large heat sinks.
- High density fins (large number of tall fins per unit length) can be expensive to manufacture.
- Want to minimize heat sink size to allow greater packing of sockets.
- Lowering thermal resistance in the rest of the system allows a less expensive heat sink to be used.



Honeywell

# Why is an Interface Material Needed?

Real Surfaces are not smooth



 < 2% of area is in metal to metal contact, even for very smooth surfaces.

 Heat conduction across air gap is poor.



### Honeywell

# Why is an Interface Material Needed?

# **Surfaces are not Planar**



- Gaps in interface due to non-planarity.
- Gaps can be quite large.
- Conduction across gap is poor.

Thermal resistance of Interface Material is

 $\theta = (T_{sink} - T_{die})/Q$ 



### Honeywell

### **Use of a Thermal Interface Material During Burn-in**

- Ideally, you would use no interface material
  - No need to clean
  - No need to replace material after each cycle.
- But, Then
  - Don't have cushioning for die.
  - Usually must polish heat sink base.
  - More of the thermal budget will be occupied by interface thermal resistance  $\rightarrow$  larger heat sink.

 Compromise by using an interface material that lasts many cycles, performs well under burn-in conditions but does not leave a residue.



Honeywell

### **Characterizing interface materials for Burn-in Use**

| <b>Desired Properties</b>                                                                                         | Typical available Information                  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Low Thermal resistance                                                                                            | Thermal resistance at one pressure             |
| High Mechanical Compliance                                                                                        | (sometimes) mechanical compliance data.        |
| Robust enough to last several<br>hundred + cycles                                                                 | No cycling info                                |
| Leaves no residue on die that must be cleaned.                                                                    | No residue info                                |
| Easy to use and apply                                                                                             | Some use info                                  |
| Withstands high temperature<br>burn-in environment with no<br>degradation in properties from<br>lower temperature | No measurement of high temperature properties. |





### **Materials Used in Characterization Tests**

| Material | Description                                     |
|----------|-------------------------------------------------|
| А        | Silicone Gel material with conductive filler,   |
|          | 0.010" thick                                    |
| В        | Elastomeric Pad with thermally conductive       |
|          | filler, 0.020" thick                            |
| С        | Graphite foil, 0.020" thick                     |
| D        | Composite of aligned carbon fibers in polymeric |
|          | matrix [2], 0.020" thick                        |
| D1       | Improved version of material D, 0.020" thick    |





# **Pressure Sensitivity of Thermal Perf.**

### **Ensure Material Performs Well at pressure in burn-in**





Honeywell

### **Benefits of Having a Compliant Interface**

 Force across die surface and thermal contact can be more uniform.



Die surface is cushioned
 will not scratch

 Can absorb tolerances if die height from device to device is different

> ELECTRONIC Interconnect MATERIALS Solutions

Honeywell



### Honeywell



### **Mechanical Compliance**



- Many material suppliers report some mechanical compliance.
- Need enough compliance at socket pressure to overcome mechanical tolerance stackups.



### Honeywell

### **Thermal Performance At Elevated Temperature**



- In general, you want thermal performance reported as a function of pressure.
- Some materials may perform differently at elevated temperatures, so characterization should be done at use temperature.



### Filmy Residue left on Die

- Residue Left on die can cause problems with downstream processes
  - marking
  - bonding
  - thermal interface application
- Residue must be cleaned, if present.
- Metric for characterizing residue is a visual since amount of residue is usually too little to detect otherwise.
- Some materials leave an oily film.









### Honeywell

### Flake type Residue Left on Dle

- Some interface materials lost chunks of material on the die
  - Chunks could migrate off die and cause problems elsewhere.
  - Interface material performance will degrade as the material falls apart.







### Honeywell

### **Residue Left on Die**

| Interface<br>Material | 300 pressure<br>cycles at room | 20 temp<br>cycles, | Bake<br>48 hours at         |
|-----------------------|--------------------------------|--------------------|-----------------------------|
|                       | temperature                    | 25C-150C           | 150°C                       |
| Material A            | Residue                        | Residue            | Residue, sticks             |
|                       |                                |                    | to die.                     |
| Material B            | Residue                        | Residue            | Residue                     |
| Material C            | No Residue                     | Flaking            | Residue,<br>Flaking         |
| Material D            | No Residue                     | No Residue         | Residue<br>Poor adhesion    |
| Material D1           | No Residue                     | No Residue         | No Residue<br>Good adhesion |



Honeywell

### **Material Robustness**





- Want interface material to last many cycles without a degradation in performance.
  - Cycle several hundred to several thousand on-off pressure cycles.
  - Use application temperature
  - Use application pressure
- Cycling tests can be difficult or time consuming to make
  - try to correlate other tests methods or materials properties.



### Honeywell

### **Robustness - Material Strength**

- Do a tensile test on material
  - pull a 0.5" wide strip to breaking.
  - Record load at failure
- Tests had similar results at room temperature and elevated temperature
- Results did not correlate with robustness behavior.

# **Tensile Test**



### Honeywell

### **Robustness - Abrasion Resistance**

- Cycling, particularly with a clamshell socket, is more represented by abrasion.
- Standard abrasion tests are too severe.
- Tried to automate an abrasion tests using a soft, foam brush.
  - Materials that tended to flake or tear in cycling failed here





### Honeywell

### **Cost Advantages in Using an compliant interface**

### • Use lower thermal resistance heat sink

- -Smaller heat can put more sockets per board
- Reduce fin height reduce distance between boards/racks
- Reduce heat sink aspect ratio (fin packing) leads to a less expensive heat sink

### Yield improvements

 mechanical cushioning of die will reduce breakage or damage.



Honeywell

### Summary

- Using an interface material for a burn-in thermal solution may enable lower cost heat sinks to be used.
- Burn-in is a severe environment for an interface material.
- Conventional interface tests do not tell everything that is needed to predict success in a high temperature, repetitive assembly environment.
- Conventional tests that are of interest are
  - Thermal resistance as a function of pressure
  - Mechanical compliance
  - Bake tests

### Honeywell



### Summary

- New characterization methods that did correlate with burn-in suitability
  - High temperature bake in contact with silicon die
  - abrasion test
  - high temperature thermal resistance

 Characterization methods were used to optimize a material (D) for burn-in use

- Maximize mechanical cycling
- minimize residue
- maintain good thermal performance at elevated temperatures



### Honeywell