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Agenda

� Package Shift to C4

� MPU Power Roadmap

� Lidded C4 Package Detail

� C4 Package Thermal Circuits

� Lidded vs. Non-Lidded Tj error (passive
control)

� Active Conduction Thermal Control Solution
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Packaging Shift for MPUs

� MPUs are shifting to C4 packaging for
improved electrical and thermal
performance
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Power Density Roadmap

MPU Power & Power Density Trends
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Lidded C4 Package Details

Heat Exchanger

Package Lid

Interface Material

Die

Substrate

Heat
Exchanger &
Lidded C4
Package
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Lidded vs. Non-Lidded C4 Package
Thermal Circuits

Tj(error)= (θθθθ(j-hs) + θθθθ(hs-hx) ) * Power

θ(j-hs)θθθθ(j-hs)

θθθθ(hs-hx)

Tj(error)= θθθθ(j-hx)* Power

θθθθ(j-hx)
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Lidded vs. Non-lidded Tj Error
(Passive Conduction Thermal Control)

Passive Tj Error vs. MPU Power Forecast 
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Active Conduction Thermal Control
 Heat Exchanger
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Active Conduction Thermal Control
System Architecture

Thermal Control
Hardware &
Software

Heater
Power
Supply

DUT

Temp.
Exchange

Heat Exchanger
Drive Signal

Coolant
System

Heater
Temp.

Coolant

DUT Power
DUT Temp.

Heat
Exchanger

Heater
Power
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Active Conduction Thermal Control
Data
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Scope of Presentation

� This presentation deals with methods
for control dut junction temperatures in
a parallel test or burn-in environment.

� What is the maximum dut power that can
reasonably be accommodated using
circulating air as the heat transfer medium?
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Presentation Road Map

� Process Cost reduction is the Goal
� System Capacity vs Throughput
� Dut Stress Uniformity vs throughput
� System capacity determinants
� Max dut power vs system capacity
� Max reasonable dut power in air
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The Real Goal: Reduced
processing cost for higher

power devices
� Cost determinants;

� tooling cost
� operating cost
� System throughput
� Yield
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Two keys to
Throughput

� System Capacity
� Shouldn�t be compromised if possible

� Stress Condition Uniformity
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Uniformity affects
Throughput

� All duts subjected to exactly identical
test/stress conditions

� Why?
� Closer tolerances allow higher stress

temps without compromising yield
� Higher stress temps allow shorter BI

duration
� Shorter BI duration allow higher throughput
� Higher throughput = lower cost
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Uniformity determinants

� All test fixturing is not alike
� Socketing variations
� chamber variations

� Ambient Temperature
� Air flow velocity

� All duts are not alike
� Mechanical
� Electrical performance
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To achieve uniform die
temps

� The thermal management system
must compensate for variations in:
� Dut to dut packaging
� Socket to socket thermal impedance
� Ambient temperature
� Dut to dut power dissipation
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Dut to Ambient Interface

� Dut to Ambient
interface comprises 3
elements:
� Dut to heat sink

interface (Primary)
� Heat sink to ambient

(Secondary)
� Dut to socket heat

leakage (small)

Primary Interface

Secondary Interface

die

Socket
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Dut to Heat Sink interface

� Ideal interface would:
� Provide low thermal impedance
� Uniform from dut to dut
� Provide even coverage across die

surface
� Leave no residue
� Robust
� Low cost

Primary Interface
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Two choices for low primary
thermal impedance

� Near perfect flatness and coplanarity
or

� Conforming thermal interface

�Any air space between two heat conducting
surfaces greater than 50x10-6� adversely

affects heat conduction�



Reliability Inc. 12

Primary interface
comparison

� Hard copper surface
� θ  j-hs: 3-5 ºC/W/cm2

� Variations due to lack of
conformability

� die coverage variations
� Requires high contact

pressure
� Die cracking
� solder ball

� Conformable
elastomer pad on
Copper
� θ  j-hs: 1-2 ºC/W/cm2

� >15psi contact pressure
� May leave residue
� maintenance issue
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Primary interface
comparison

� RI�s conform-able
interface on
copper
� θ  j-hs:

~0.5ºC/W/cm2

           +/-  5%
~15  psi contact
pressure

� Hard copper surface
� θ  j-hs: 3-5 ºC/W/cm2

� Variations due to lack of
conformability

� die coverage variations
� Requires high contact

pressure
� Die cracking
� solder ball damage
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Yield vs Throughput

� Pressing hard enough on a hard
interface to insure even, consistent
contact may lead to mechanical
damage.

� Not pressing hard may lead to
inconsistent thermal management

� Allowing for inconsistent thermal
management compromises throughput
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Heat sink to Ambient
interface

(Secondary interface)� Ideal
� low thermal impedance to ambient
� uniform from dut to dut
� cheap

� Our answer: Finned copper in high
velocity air

Secondary Interface
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Coolant uniformity

� Ambient temperature must be the same
for all duts

� Secondary thermal interface is a
function of heat sink to coolant contact

� HS to coolant contact is a function of
heat sink design & coolant velocity
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Coolant velocity
� Thermal boundary layer gets thinner as

velocity increases

Heat sink fin

Air Flow
Effective boundary layer

Thermal boundary layer



Reliability Inc. Source: Christopher A. Soule PCIM Magizine August '97 pp104-111 18

Heatsink effectiveness vs  air
flow velocity

� Boundary layer changes less above 1000 lfm

Effective Boundary Thickness
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RI Criteria System Air flow
Calculated:

Velocity Min/Max = 1800/2533 lfm

Measurement Results
Top Backplane

Min = 2105 lfm
Max = 3680 lfm

Bottom Backplane
Min = 1715 lfm
Max = 2905 lfm
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Total ∆∆∆∆T Vs Air velocity
DUT Power (Watts) 50

14.7 14.7
Heatsink Area (Sq.In.) 20.0 0.52

Temperature Difference Between Die and Air in a C20 Chamber
For a 20 Sq. In. heatsink with a 2.2 Sq.Cm.Die Running at from 50 to 0 Watts

Laminer Flow Turbulent Flow

DUT to Heatsink Interface
Die size (mm) X (mm)

Thermal Resistance in °C per Watt per Sq. CM
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Thermal impedance stack-
up

� θ j-hs  ~0.5 C/W/cm2

       ~2 cm2 = 0.25 C/W/cm2  +/-5%
Calibrated per device

� θ hs-a  = 0.42 C/W +/-15%
� Total θ j-a = 0.67 C/W +/- 20%

Junction Heat Sink Ambient

θ j-hs θ hs-a
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Temperature uniformity
compensation

� Contributors:
� Dut to Dut power variation
� θ  hs-a variation
� θ  j-hs variation

� Can compensate for dut power, θ  j-
hs & θ  hs-a
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Per DUT Compensation
methods:

� Control thermal impedance path

� Add heat with fixed thermal impedance
path

Junction Heat Sink Ambient

θ j-hs θ hs-a
Adjust

Junction Heat Sink Ambient

θ j-hs θ hs-a

Add heat
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Individually Controlled
impedance path per dut

� modulated coolant
� complex electromechanical mechanism
� thermally efficient
� not robust
� expensive

Modulate coolant
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Method 2
� Thermo-electric cooler impedance

modulation
� allows higher chamber ambient

temperature
� robust
� low efficiency
� expensive

Impedance modulation
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Added heat compensation

� Resistive element heater
� robust
� cheap
� not efficient

Add make-up heat

Junction Heat Sink Ambient

θ j-hs θ hs-a

Add heat

Net effect is reduction of ∆∆∆∆T j-hs
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Heater sizing
� Assume 100% variation in dut power
� θ  j-a varies from 0.54C/W to .80C/W
� Therefore 50W * .80C/W = 40C
� Smallest θ hs-a is 0.36C/W
� Therefore we must add ~112W to make

up 40C

Junction Heat Sink Ambient

θ j-hs θ hs-a

Add heat
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Dut Temperature
Measurement

� To compensate for variations we must know:
� Dut power
� Ambient temp
� Die Temp

� Plea to Device Designers:
Please put accessible, accurate, temp
measurement devices on the die!
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Measurement Method 1

� Die measurement outside
the thermal path

� disturbs heat removal
uniformity

� susceptible to local variations
in die temp

Measurement device
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Temperature Measurement
Method 2

� Measure heat sink temp
� maintains uniform die

coverage
� provides die temp

averaging
� allows compensation for

hs-a
� must compensate for dut

to hs thermal interface

Measurement
Device
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Dut temp
prediction/compensation

� If we know:
� dut power
� ambient temp
� thermal impedance from dut to

ambient
� Then we can calculate dut temp

and correct

DUT
Set Point

Cntrl
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Plot of DUT Temperature/Power versus Time 
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Parameters
DUT Temp. sp = 85 C
Airflow = 1700 (+/- 30) lfm
Air Temperature = 22 C
DUT Pwr. = 16-50-0 W Trans

16 W Steady State
Max. Temp. = 85.6 C
Min. Temp. = 84.8 C
Average = 85.23 C
meas/calc error = 0.11 C

50 W Steady State
Max. Temp. = 86.2 C
Min. Temp. = 84.9 C
Average = 85.39 C
meas/calc error = 0.06 C

0 W Steady State
Max. Temp. = 85.9 C
Min. Temp. = 85.0 C
Average = 85.64 C
meas/calc error = 0.5 C

50-0W Transition
Undershoot = 75 C
Duration = 67s

16-50W Transition
Overshoot = 90.35 C
Duration = 42s
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So far we have provided:

� a consistent low thermal impedance
from the die to ambient

� Worst cast = 0.8 º C/W
� 0.80 º C/W * 50W =  40 ºC rise from dut

to ambient
� IF target Tj is 125 ºC then Ambient must

be 125 - 40 = 85 ºC
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System Power Sizing

� Assume normal distribution of 0 to 50W
duts

� Therefore avg Power = 25W
� Therefore must make up 25W/dut
� If 115W make up for 0W then avg

make-up heat = (25/50)*112W =56W
� 56W + 25W = 81W/dut
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System Capacity

� Standard C18 dissipates 5500W @ 85
ºC

� 5500W / 81W/dut = 67 duts/system

� C20 dissipates 24,000W @ 50 ºC
� 24000 / 81 => 296 duts/system

or >12 duts/burn-in board
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The total system must:

� Combine:
� Low thermal impedance

path to coolant
� dut power variation

compensation
� High power handling at

low ambient set points
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Conclusions

� �Conventional� circulating air Test &BI is
viable for dut power dissipation <50W

� This is desirable because it:
� High throughput
� Robust
� Maintains current process paradigm
� Saves money!
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BibsBibs

�Electrical

�Mechanical

�Thermal

�Cost
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ElectricalElectrical

�Noise; Cross Talk
�Rise/Fall Times
�Functional Test
�Bist
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MechanicalMechanical

�Loader/Unloader
�Rigidity
�Bowing
�Accuracy
�Plating
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ThermalThermal

�Objectives:
-  Temperature
-  Voltage
-  Fail Safe Protection
-  Cost
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ThermalThermal

�Design Goal:
-  Tight Die Temperature Control for
Differing DUT Power Dissipation
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ThermalThermal

�Smart Heat Sink
�Thermocouple
�Heat Pump
�Control Module
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ThermalThermal

� Voltage:
-  Low Voltage 1.8 V

� Current:
-  High Current Up to 30.0 A

� Power Characteristics of Target DUTS:
-  Wide Range of Power Dissipation
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ThermalThermal

� System Description:
- An intelligent heat sink is assigned to each DUT
allowing bi-directional transfer of heat between
DUT and heat sink surfaces.
- The intelligent heat sink pulls heat out of hot
devices and pushes heat into cold devices
maintaining the desired uniform temperature on
each DUT.
- The intelligent heat sink  consists of a bi-
directional heat pump sandwiched between two
parts of a passive metal heat sink.
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ThermalThermal

� Temperature Control:
-  A temperature sensor and one side of the
modified heat sink get into direct contact with the
surface of the DUT.
-  The other portion of the modified heat sink has
the fins that interface with the oven air flow.
-  The temperature of the oven is set at an
appropriate level that would allow the thermal
control system to work.
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ThermalThermal

� Temperature Control cont.:
-  Imbedded between the two portions of the metal
heat sink is the heat pump. the heat pump is
electric current controlled.
-  The direction of the heat flow is determined by
the direction of the current through the heat pump.
-  The direction of the current depends on whether
the DUT temperature that is sensed is higher or
lower than the target temperature.
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ThermalThermal
(Voltage)(Voltage)

� Voltage:
� DC to DC Converter
� Sense at DUT
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ThermalThermal
(Voltage)(Voltage)

� Design Goal:
- Tight Voltage Control Throughout the Full
Target Current Range
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ThermalThermal
(Voltage)(Voltage)

� System Description:
-  One dc to dc converter is dedicated to
each DUT cell, allowing very tight voltage
regulation and control over each cell.
-  Voltage sensing for regulation is picked
up right at the DUT load thereby reducing
drastically the voltage variations caused by
the large current draws.
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ThermalThermal
(Protection)(Protection)

� Design Goal:
- Provide Fail Safe Control to Protect
Devices Under Test

� Shut Down Mode
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ThermalThermal
(Protection)(Protection)

� Fail Safe Features:
-  Power is turned off to a DUT on thermal
runaway, over voltage and over current conditions.
-  No power is applied to a cell on �DUT absent"
condition.
-  No power is delivered to the bib while the the
heat sink and power control assembly is "in
transit".
-  Burn-in board can not be withdrawn unless the
control assembly is in the retracted position.
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ThermalThermal
(Protection)(Protection)

� System Description:
-  Some standard, widely-used burn-in systems
have user-designed back planes and driver boards
for exercising and stressing microprocessor and
asic products.
-  New burn-in board design plugs into these
existing systems but with provisions for
individually controlling the power to each DUT
cell and individually controlling the temperature
of the device in each cell.
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ThermalThermal
(Protection)(Protection)

� System Description cont.:
-  These power and thermal control functions may
be housed in a separate assembly plugged into the
slot next to the burn-in board it is intended to
control.
-  This second approach allows for use of these
control overhead over several application devices
provided that a standard density and geometry of
the burn-in board is implemented. choice of socket
is very important in order to allow efficiency in
thermal interface and transfer.
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ThermalThermal
(Cost)(Cost)

� Design Goal:
- Design into a wide-based, standard, and
familiar burn-in system

� Air Heat Exchange
� Existing Hardware
� Total Solution
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ThermalThermal
(Mechanical)(Mechanical)

� System Description:
-  The mechanical design of the voltage and
control assembly and the kinematics of
mechanical motion required to move the
heat sink and power tabs against the
required surface contact pressure between
the DUT surface and the heat sink is the
most challenging part of this project.
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