

Burn-in & Test Socket Workshop 2000

Session 6

New Technologies

BURN-IN & TEST SOCKET WORKSHOP

<u>COPYRIGHT NOTICE</u>

• The papers in this publication comprise the proceedings of the 2000 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.

 There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

Presentations

"Using MicroSpringtm Contacts As Second Level Interconnect"

John Novitsky FormFactor

"A New Burn-in Socket For Fine Pitch BGAs"

Yuji Wada	Akio Hasebe	Kenichiro Morinaga
Hitachi Ltd.	Hitachi Ltd.	Hitachi Ltd.

Hideo ArimaHiroyuki MogiHokuto KanesashiHitachi Ltd.Enplas CorporationEnplas Corporation

Tomoaki Soshi Enplas Corporation

"Novel Contacting Technology For Fine Pitch Leaded & Area Array Devices"

Frank Bumb Ron Revell 3M 3M

Using MicroSpringTM Contacts as Second Level Interconnect

BiTS Workshop Mesa, Az. 28 February 00

John Novitsky VP Business Development 925-456-3850 jnovitsky@formfactor.com

Primary Invention: MicroSpring[™] Contact

1. Bond and shape a gold wire to form a spring "skeleton".

2. Patented wire cut process for z axis planarity.

3. Overcoat the "Skeleton" with a spring alloy to form a MicroSpring Contact.

Two Business Models

Product Probe Cards

IP Licensing WOW/MOST

Sockets

Probe Card: for C4 Balls or AI Pads

C4 Probe Cards

Wire-bond Probe Cards

Field Performance of Probe Cards

- FFI Probe Cards have been in the field for ~4 years
- Most heavily used Probe Cards have seen over 2 Million touchdown cycles (@ 5 Mils deflection), with no abrasive cleaning performed, and no measurable wearout mechanism.
 - → FFI Probe Cards now ship with a lifetime warranty.
 - Probe Cards contain an "interposer". This two-sided interposer is a wiping, Au on Au pad on ceramic on the top, and wiping Au on Au pad on PCB on the bottom. CRES remains stable over the life of the cards, so FFI has high confidence that the MicroSpring contact used as a second level interconnect is inherently stable.

Variables of MicroSpring Contacts

Spring shape:

- → Height, length: determine wipe motion, influence resilency, influence elec-specs
- → Cross section: round wire or ribbon wire: influence durability, elec-specs
- Metalurgy:
 - → Overplating metals: influences durability, long term reliability/stability, k-value
- Tips:
 - Shape, materials: influences initial CRES and lifetime durability, required cleaning processes and cycles, determines pad metalurgy
- # Contacts/pad
 - Redundant contacts used in some applications
- Pitch:
 - → C4 Probe Cards in production at 9 mil area array pitch
 - → DRAM Probe Cards (AI WB pads) in production at <5 mil pitch</p>
 - Sockets min pitch estimated around 15 mils

MicroSpring Contacts on Silicon

Wafer Covered with MicroSpring Contacts

2-Sided Module Soldered with MicroSpring Contacts

MOST

MicroSpring Contacts on Silicon

Process Overview:

- Fabricate MicroSpring contacts onto Si Wafer
- → Handle and test as whole wafers, or as singulated ICs
- → Solder, or socket, to PCB modules
- Benefits:
 - → Very low cost CSP (<\$0.005/lead)
 - Very low cost and scalable back-end test and handling costs
 - Industry's highest demonstrated CSP reliability
 - Demonstrated high performance

Note: the MicroSpring contact is used both as the temporary compliant interface to IC test equipment, and as the interconnect from the IC to boards, blurring the historical distinction between first and second level interconnect.

MOST WLBI Clamp and Contactor

MOST Sockets

MicroSpring Contacts in Burn-in

- Socket, for this application, means an x-y registration frame with a hold-down lid.
- FFI is doing its most extensive burn-in characterization for the purposes of qualifying MicroSpring contacts on Silicon wafers (MOST).
- Two forms of BI contactors have been built, and are being commercialized:
 - → a wafer level BI contactor that mates to a wafer full of MOST contacts.
 - a BI/test socket for singulated die with MOST contacts. Both Yamaichi and Aehr have demonstrated forms of these sockets.

FFI Socket Strategy

- Apply MicroSpringTM Contact Technology, Production Proven in FormFactor's Industry Leading Wafer Probe Cards
- License to High Volume Sockets Suppliers

	<u>LGA</u>	<u>BGA</u>
Production Sockets	х	
Bring-up Sockets	х	Х

Cross Section of Socket

- Floating "pin protector", aligns package, protects contact tips, acts as positive compression stop.
- Solders directly onto BGA pattern.
- Footprint compatible between Engineering bring-up socket, and production socket.
- When socket no longer desired, simply solder BGA in place.
- A family of standard body sizes & pitches is being developed, to be compatible standard packages.

Example 1: 2mm Socket Stackup

Contactor: 35 Mils (compressed)

PCB: 25 Mils Soldered Balls: 20 Mils

Total: 80 Mils

Scrub: ~8 Mils Coplanarity/ Compliance: 8-10 Mils + 2-3 Mils with 'Set'

MicroSpring[™] Contact Array

Wiping Au Tip on Au Pad

Au Spherical Tip

Scrub Mark on Au Pad

Example 2: 0.7 mm Socket Stackup

0.7mm Socket Stackup

Contact:

Substrate: Solder: Pad: Total:

Scrub:

Compliance:

Inductance:

Series Resistance:

3 Mils 6 Mils (stencil print) 1 Mil

Before Attach

33 Mils

43 Mils

After Soldering 21 (compressed)

3 Mils 1 Mil <u>1 Mil</u> 26 Mils (0.7mm)

~ 6 Mils (measured) ~ 12 Mils (measured) ~ 9 mOhms (measured) ~0.62nH (simulated)

0.7mm MicroSpring Contacts

Additional Contact Shapes

CRES "Knee of the Curve" ~5 Grams

MicroSpring Contactor Hertzian Stress Exceeds Minimums for Reliable Lifetime Contact

MicroSpring Contacts are Reliable

- Two subsets of EIA 701 have been run, and passed, in 1998.
- Interposers used in FFI probe cards since 1996, with no problems.
- Tyco Tests Performed, and *Passed*:
 - Mechanical: Initial Mating Force, Resistance, Durability, Vibration, Mech Shock, Resistance
 - Temp Life
 - Mixed Flowing Gas
 - Insulation Resistance
 - Thermal Cycling, Humidity Cycling: (in process)
- White Paper available from Tyco or FFI

MicroSpring Contact Socket Benefits

Reliable at Low Force, Low Height

- 10g/pin, +/- 2x. Min Stackup @ 20 mils.
- Ideal for portable electronics, or for high pin count packages.
- Up to 15 mils of Compliance
- Durability of Thousands of Cycles @ 10 mils
 - Millions of cycles at 5 mils
- Easily scales to 0.5mm pitch
 - Max array size 100 mm x 100mm (today)
- Manufacturing Friendly System
 - Substrate prevents solder wicking, BGA balls simplify alignment, MicroSpring compliance reduces rejects
 - Any solderable surface on the Motherboard, compatible with normal BGA
 - Wiping contact improves initial mating success
 - Floating pin protector protects tips, provides positive compression stop for efficient heat sinking
 - Compatible between BGA/LGA bring-up socket, LGA production socket, limited test LGA socket

MicroSpring Socket Summary

- MicroSpring Contacts are being used in:
 - BGA and LGA bring-up sockets
 - LGA production and test sockets
- MicroSpring sockets are the Industry's:
 - Iowest force, lowest profile, and finest pitch socket system
 - highest compliance socket system
- FFI is in the business of licensing the contact technology to high volume sockets makers
 - Contact Tyco Electronics for samples, production, or quotes

A NEW BURN-IN SOCKET FOR FINE PITCH BGAs

Yuji Wada , Akio Hasebe , Kenichiro Morinaga and Hideo Arima

Assembly Technology Development Operation Semiconductor Integrated Circuits, Hitachi Ltd.

And

Hiroyuki Mogi, Hokuto Kanesashi Tomoaki Soshi

Semiconductor Peripherals Div., Enplas Corporation

02/29/2000

Agenda

- Market Trend
- Technical Issue and Its Countermeasure
- Socket Technology
 - Projected Formed Contact Technology
 - Reduction of Solder Ball Deformation
 - Absorption for Uneven Solder Ball Height
 - Accurate Alignment of Socket Assembly
 - Tape Circuit Fanned-out
- Socket Cost Reduction
- Future Development
- Conclusion

Market Trend

Market Trend

LOGIC SOCKET

02/29/2000

Market Trend

Current Socket Design for CSP 0.5 mm Pitch

Sheet Rubber Type

Spring Probe Pin Type

Technical Issue and Its Countermeasure Technical Issues

- Reliable & economical contact for less than 0.5 mm pitch is not yet established.
 - Longer Life Cycle after Burn-in (125 deg. C.)
 - Less Solder Ball Deformation after Burn-in (125 deg. C.)
 - Absorption for Uneven Solder Ball Height
 - Accurate Precise Alignment of Socket Assembly
- Difficulty of BIB Design Followed by Package Fine Pitch Tendency

Technical Issue and Its Countermeasure Countermeasures

- Development of Highly Reliable Contact
 - Projection Formed Contact Technology
 »Longer Life Cycle
 - Polyimide Stopper
 - »Less Solder Ball Deformation
 - Appropriate Contact Force & Elastomer
 - »Absorption for Uneven Solder Ball Height
 - Multiple Layered Method
 - »Accurate Socket Assembly
- Tape Circuit Fanned-out

»Applicable with Current BIB Technology

- 2 Layered Wiring
- Polyimide Stopper
- Elastomer

Sheet Contact SOCKET

02/29/2000

Socket Technology

- Projection Formed Contact Technology
- Reduction of Solder Ball Deformation
- Absorption for Uneven Solder Ball Height
- Accurate Alignment on Socket Assembly
- Tape Circuit Fanned-out

Socket Technology Projection Formed Contact Technology

- To Realize Solder Ball Self-alignment
- To Realize Longer Contact Life by Designing Edge Contact
- To Absorb Uneven Solder Ball Height by Increasing and Standardizing Edge Contact Height

02/29/2000

Principle of 4 probe method

Socket Technology Engineering Data

Transition of Contact Resistance after 125deg.-C for 1000hours

Result of Evaluation for Contact life time

Socket Technology Reduction of Solder Ball Deformation

 By using polyimide stopper, even Sn/Pb solder ball can be minimized. Pb free solder ball can be more minimized.

Socket Technology Reduction of Solder Ball Deformation

Transition of bump height Data (w/ and w/o Polyimide Stopper

Transition of bump height at 150deg.-C

solder : 64Sn/36Pb

stopper less	stopper					
150degC for 1h	150degC for 1h	150degC for 8h				
0.1mm						

Assembly Reliability

Cross section of mounted CSP256pin

Socket Technology Absorption for Uneven Solder Ball Height

- Appropriate Contact Force
- Elastomer Application

Socket Technology Accurate Alignment on Socket Assembly

 Accurate alignment on socket assembly can realize by using multiple layer method.

Socket Technology Tape Circuit Fanned-out

• Fanned-out Tape Circuit can realize to apply current BIB technology. (0.5mm pitch 1.27mm

Socket Cost Reduction

• By increasing varieties of Tape circuit, alignment plate, and pad, this socket can widely apply with variety of BGA package. (288 pin at maximum)

02/29/2000

Series Lineup

- BGA-288-0.5 Series
- BGA-288-0.4 Series Plan
- BGA-420-0.5 Series Plan
- BGA-420-0.4 Series Plan
- BGA-676-0.5 Series Plan
- BGA-676-0.4 Series Plan

Socket Cost Reduction BGA-288-0.5 Series Lineup

PKG Size	Grid		Full	5row	4row	3row	2row
6	11	11	121	120	112	96	72
7	11	11	121	120	112	108	80
7	12	12	144	140	120	100	88
8	13	13	105	180	160	120	96
8	15	15	225	200	100	132	104
9	16	16	256	220	192	156	112
9	10	10	289	240	208	168	120
10	18	18	324	260	200	180	128
10	19	19	361	280	240	192	136
11	20	20	400	300	256	204	144
11	21	21	441	320	272	216	152
12	22	22	484	340	288	228	160
12	23	23	529	360	304	240	168
13	24	24	576	380	320	252	176
13	25	25	625	400	336	264	184
14	26	26	676	420	352	276	192
14	27	27	729	440	368	288	200
15	28	28	784	460	384	300	208
15	29	29	841	480	400	312	216
16	30	30	900	500	416	324	224
16	31	31	961	520	432	336	232
17	32	32	1024	540	448	348	240
17	33	33	1089	560	464	360	248
18	34	34	1156	580	480	372	256
18	35	35	1225	600	496	384	264
19	36	36	1296	620	512	396	272
19	37	37	1369	640	528	408	280
20	38	38	1444	660	544	420	288

02/29/2000

Future Development

 Applicable with LGA Package.

- Applicable with Future Market Demands of High Pin Count & Fine Pitch (0.3 & 0.4 mm pitch).
- More Cost Reduction by Realizing Multiple package / Tape Circuit per Socket
- Application for Test Socket

Conclusion

- Development of Highly Reliable Contact
 - To Realize Longer Life of Contact
 - To Minimize Solder Ball Deformation
 - To Absorb Uneven Height of Solder Ball
 - To Improve Accurate Alignment on Socket
 Assembly by Applying Multiple Layered Socket
- Applicable with Current BIB Technology
- Socket Cost Reduction(Increasing Varieties of Tape Circuit, Alignment Plate, & Pad)
- Applicable with LGA & Future Market Demands(High Pin Count & Fine Pitch)

Novel Contacting Technology for Fine Pitch Leaded & Area Array Devices

Frank Bumb Product Development Manager Phoenix, AZ Ron Revell Laboratory Manager Austin, TX

Electronic Handling & Protection Division

BiTS 2000 Revell.ppt

Outline

- The Problem
 - Pitch
 - Signal Integrity
- Design Objectives
- Design Features
- Design Evaluation

Electronic Handling & Protection Division

The Problem

Electronic Handling & Protection Division

BiTS 2000 Revell.ppt

IC Package Trends

3M BGA/LGA SOCKET

Electronic Handling & Protection Division

BiTS 2000 Revell.ppt

SOCKET CONSTRUCTION

Physical

Body :

Material : Polyethersulfone (PES) Flammability : UL 94V-0 Color : Black

Alignment Plate :

Material : Liquid Crystal Polymer (LCP) Flammability : UL 94V-0 Color : Black

Contact :

Material : Beryllium Copper Plating : Gold over Nickel

Other Metal Parts :

Material : Stainless Steel

Marking :

3M Logo / Textool Logo Pin #1 Indicator / Part No.

Electronic Handling & Protection Division

CONTACT CONCEPT

Electronic Handling & Protection Division

Pitch Reduction

BiTS 2000 Revell.ppt

Signal Integrity Drivers

Current Technology Limitations

Why New Technology?

- Limitations of Mold-Stamp-Assemble(MSA)
 - Physical size
 - Fabrication
 - Assembly
 - Strength of materials
 - Electrical performance
 - Inductance
 - Resistance
 - Interconnect resistance

Electronic Handling & Protection Division

New Technologies

- Miniaturized standard technologies stampings
 & pogo pins
- Columns of coiled wire
- Wires in elastomer or epoxy
- Columns of electrodeposited fibrous metal in elastomer
- Columns of particles in elastomer
- Flex circuits with particles & bumps with elastomer backing

Electronic Handling & Protection Division

MicroTouch™ High Performance Testing Solutions

Electronic Handling & Protection Division

BiTS 2000 Revell.ppt

Design Objectives

- Size
- Signal Integrity
- Mechanical Durability

MicroTouch[™] Products Characterization to Final Test

Electronic Handling & Protection Division

MicroTouchTM Automation

Electronic Handling & Protection Division

Design Features

- Contact Mechanism
- Signal Path
- Adaptability

MicroTouch[™] Compliant Leads Contact Set

Top or device side

Electronic Handling & Protection Division Back or load board side

MicroTouch[™] Compliant Leads Contact Set

- Piercing contact
 - Oxide penetration
 - No wipe
 - Multiple contact points
- Long life
 - Hard particles
 - Easy to clean

Electronic Handling & Protection Division

Contact set

Device lead

MicroTouch™ Compliant Leads Elastomeric Nest

Slab style rubber for TQFP

Full rubber fins for QFP, CQFP

Electronic Handling & Protection Division

MicroTouch[™] Area Grid Arrays Operation

Electronic Handling & Protection Division

Design Evaluation

Electronic Handling & Protection Division

MicroTouch™ Compliant Leads Mechanical Specifications

Temperature range	-55° to +165° C
-------------------	-----------------

Contactor life

> 1,000,000 insertions

- Lead press life
- Insertion force
- **Cleaning interval**

- > 200,000 insertions
- 10 20 grams/lead
- Dependent on environment

MicroTouch™ Area Grid Arrays Mechanical Specifications

Temperature range	-55° to +165° C
Contactor life	> 1,000,000 insertions
Elastomer element life	> 200,000 insertions
Insertion force	12 grams/lead
Cleaning interval	Dependent on environment

MicroTouch™ Area Grid Arrays Electrical Specifications

MicroTouch™ Area Grid Arrays Features and Benefits

- Wide Bandwidth for high frequency testing (10 GHz)
- Low inductance/capacitance preserves signal integrity
 - Total contact length of only 1mm
 - Lead inductance < 0.36 nH
 - Contact Resistance < 0.05Ω
- Advanced mechanical design minimizes ball damage
 - Very low contact force
 - Ball guided for precise alignment
- Long operating life provides low cost of ownership

